The cytotoxic and immunogenic hurdles associated with non-viral mRNA-mediated reprogramming of human fibroblasts.

نویسندگان

  • Katharina Drews
  • Geertrui Tavernier
  • Joseph Demeester
  • Hans Lehrach
  • Stefaan C De Smedt
  • Joanna Rejman
  • James Adjaye
چکیده

Delivery of reprogramming factor-encoding mRNAs by means of lipofection in somatic cells is a desirable method for deriving integration-free iPSCs. However, the lack of reproducibility implies there are major hurdles to overcome before this protocol becomes universally accepted. This study demonstrates the functionality of our in-house synthesized mRNAs expressing the reprogramming factors (OCT4, SOX2, KLF4, c-MYC) within the nucleus of human fibroblasts. However, upon repeated transfections, the mRNAs induced severe loss of cell viability as demonstrated by MTT cytotoxicity assays. Microarray-derived transcriptome data revealed that the poor cell survival was mainly due to the innate immune response triggered by the exogenous mRNAs. We validated the influence of mRNA transfection on key immune response-associated transcript levels, including IFNB1, RIG-I, PKR, IL12A, IRF7 and CCL5, by quantitative real-time PCR and directly compared these with the levels induced by other methods previously published to mediate reprogramming in somatic cells. Finally, we evaluated chemical compounds (B18R, chloroquine, TSA, Pepinh-TRIF, Pepinh-MYD), known for their ability to suppress cellular innate immune responses. However, none of these had the desired effect. The data presented here should provide the basis for further investigations into other immunosuppressing strategies that might facilitate efficient mRNA-mediated cellular reprogramming in human cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Direct Reprogramming of Mouse Fibroblasts to Neural Stem Cells by Small Molecules

Although it is possible to generate neural stem cells (NSC) from somatic cells by reprogramming technologies with transcription factors, clinical utilization of patient-specific NSC for the treatment of human diseases remains elusive. The risk hurdles are associated with viral transduction vectors induced mutagenesis, tumor formation from undifferentiated stem cells, and transcription factors-i...

متن کامل

O-31: Mifepristone Acts as Progesterone Antagonistof Non-Genomic Responses but InhibitsPhytohemagglutinin Induced Proliferationin Human T Cells

Background: Progesterone is an endogenous immunomodulator that suppresses T cell activation during pregnancy. The stimulation of membrane progesterone receptors (mPRs) would seem to be the cause of rapid non-genomic responses in human peripheral T cells, such as an elevation of intracellular calcium ([Ca2+] i) and decreased intracellular pH (pHi). Mifepristoneimmune cells compared with progeste...

متن کامل

I-11: Dedifferentiation of Mouse Fibroblast Cells by Chemical Induction

Induced pluripotent stem cells (iPSCs) generated by ectopic expression of four transcription factors have great promises for regenerative medicine in humans. Since the initial report of iPSCs by viral transfection, ample efforts have been made in the generation of iPSCs through nonviral approaches. Small molecules offer the advantages of low cost without genomic modification and have been used ...

متن کامل

P123: Stimulating In Vivo Remyelination (IVR): A New Approach for Multiple Sclerosis Treatment

Multiple sclerosis (MS) is one of the most common neuroinflammatory disorders that causes disability in the young adults. In this disease immune-driven demyelination and following that inefficient remyelination occurs. Therapies for this disease are limited, especially those to enhance myelin repair. Cellular reprogramming using defined genetic factors is a way to produce remyelinating Oligoden...

متن کامل

I-10: Transcriptomics in Oocyte Mediated Cellular Reprogramming

a:4:{s:10:"Background";s:1707:"Early embryonic development in mammals begins in transcriptional silence with an oocyte-mediated transcriptional reprogramming of parental gametes occurs during a so called across-the-board process of “erase-and-rebuild”. In this process, the parental transcription programs are erased long before (maternal) or soon thereafter (paternal) fertilization to generate a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomaterials

دوره 33 16  شماره 

صفحات  -

تاریخ انتشار 2012